Author / Contributor
Parent Resource8
Emerging Biotechnology Case Study: Genome Editing & the Ethics of CRISPR-Cas9
Emerging Biotechnology Case Study: Genome Editing & the Ethics of CRISPR-Cas9


Author(s) Valerie Racine
Show More Show Less
Contributor(s) Valerie Racine Karin Ellison Joseph Herkert
Notes The author wishes to acknowledge the contributions of Karin Ellison, OEC - Life and Environmental Sciences Editor, and Joseph Herkert, OEC Engineering co-Editor. They provided valuable input in selecting topics and crafting the resources.
Funder This material is based upon work supported by the National Science Foundation under Award No. 1355547, Karin Ellison and Joseph Herkert, Arizona State University sub-award Co-PIs. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.
Year 2016
Sort By
  • Valerie  Racine

    Posted 2 years and 4 months ago

    The publication of Huang and colleagues’ research caused a stir in the scientific community and generated many editorials and opinion pieces in scientific publications warning about the ethical issues that must be addressed before this research is pursued any further.

    Scientists were quick to call for a moratorium on all genome editing of human embryos, and invoked similarities to the technological innovation that led to recombinant DNA in the 1970s and the meeting at Asilomar in 1975, where molecular biologists met to discuss and set guidelines to ensure that genetic research would develop in a safe and ethical manner (Vogel 2015).

    However, many are critical of the comparisons with the Asilomar meeting and the attempt to use that conference as a model on which to build bioethical guidelines for future research with genome editing technologies (Jasanoff et al. 2015). Critics claim that the 1975 Asilomar conference was not an inclusive meeting because many of the stakeholders were not invited, such as ethicists, politicians, religious groups, and representatives of human-rights organizations or patient-interest groups (Reardon 2015b). Because of the lack of representation from non-scientists in the discussions, critics claim that Asilomar was merely an effort by scientists to resist government restrictions and promote public trust in the idea that scientists are able to regulate themselves (Reardon 2015b).

    In response to calls for a moratorium, the US National Academy of Sciences (NAS) and the National Academy of Medicine (NAM) have launched an initiative to develop new guidelines to address the use of technology which makes germ line genetic modification possible, and called for members of the scientific community to attend an international summit on the topic set in December 2015 (Reardon 2015b).

    The International Summit on Human Gene Editing held in Washington, D.C., in December 2015, was hosted by the National Academy of Sciences, the National Academy of Medicine, the Chinese Academy of Sciences, and the U.K.'s Royal Society. Members of the Summit’s organizing committee submitted a public statement shortly after the meeting, outlining four recommendations. First, basic and preclinical research on gene-editing technologies is needed and should proceed. Second, clinical use of the technologies on somatic cells should be explored. Third, it is irresponsible to pursue clinical applications of gene-editing technologies on germline cells at this time. And, fourth, there is a need for ongoing discussions regarding the clinical use of germline gene editing, so the national academies should create a forum to allow for discussions which are inclusive and which engage with a variety of perspectives and expertise.   

    Some science policy experts have argued that the complexity of the issues surrounding germ line genetic modification cannot be adequately addressed from a scientific perspective. For example, Daniel Sarewitz, co-director of Arizona State University’s Consortium for Science, Policy, and Outcomes, argues:

    The idea that the risks, benefits and ethical challenges of these emerging technologies are something to be decided by experts is wrong-headed, futile and self-defeating. It misunderstands the role of science in public discussions about technological risk. It seriously underestimates the democratic sources of science's vitality and the capacities of democratic deliberation. And it will further delegitimize and politicize science in modern societies (Sarewitz 2015).

    Sarewitz’s comment signifies the importance of a democratic deliberative process when identifying and addressing ethical issues about emerging technologies, as well as developing guidelines that will help to decide how these technologies will be further developed and used. In this particular case, there is worry that germ line genetic modification on human embryos to replace defective genes may lead to a slippery slope to eugenics, or attempts to create perfect designer babies.

    Lastly, the decision by Science and Nature to decline to publish the research paper because of undisclosed ethical objections raised further ethical issues about the dissemination of scientific research within a global context. The managing editor of Protein & Cells, Xiaoxue Zhang, has claimed that their editorial board was not blind to the potential ethical objections to the research, but decided to publish the article as a way to “sound an alarm” to begin discussions about the future direction of genome editing technologies (Cressey & Cyranoski 2015). Whether these discussions should come before or after the scientific research is conducted or published raises important questions about how best to regulate innovative scientific research with uncertain outcomes or potential dual-use applications.

Cite this page: "Emerging Biotechnology Case Study: Genome Editing & the Ethics of CRISPR-Cas9" Online Ethics Center for Engineering 4/19/2017 OEC Accessed: Saturday, August 24, 2019 <>